Long-Term Averages

General Approaches

Maintain soil moisture within desired limits

- > direct measurement
- > moisture accounting

Use plant status indicators to trigger irrigation

- > wilting, leaf rolling, leaf color
- > canopy-air temperature difference

Irrigate according to calendar or fixed schedule

- > Irrigation district delivery schedule
- > Watching the neighbors

Yield/Appearance vs. ET_c

ETc

Deficit Irrigation

Growth/Yield vs. fr (Figure 6.2)

Water Availability Thresholds

- fr_{min} = minimum fraction of available water remaining before plant stress occurs
 fd_{max} = maximum allowable fraction of available water depletion before plant stress OCCUrs
- $fd_{max} = 1 fr_{min}$
- \odot fd_{max} depends on species, genotype, weather
- Rule-of-Thumb:

fd_{max} = 0.50 (use this rule with caution)

fd_{max} by Crop and Maximum Crop ET Rate

Table 6.1. Estimated maximum allowable fraction depletion to maintain maximum yields of crops grouped according to sensitivity (modified from Doorenbos and Kassam, 1979).

Group Crops										
1 2 3 4	onion, pepper, potato banana, cabbage, pea, tomato alfalfa, bean, citrus, groundnut, pineapple, sunflower, watermelon, wheat cotton, sorghum, olive, grape, safflower, corn, soybean, sugarbeet, tobacco									
f _{dmax} to Maintain Maximum Evapotranspiration Rates										
	Maximum ET _c (in/d)									
Стор Group	0.08	0.12	0.16	0.20	0.24	0.28	0.31	0.35	0.39	
1	0.50	0.43	0.35	0.30	0.25	0.23	0.20	0.20	0.18	
2	0.68	0.58	0.45	0.40	0.35	0.33	0.28	0.25	0.23	
3	0.80	0.70	0.60	0.50	0.45	0.43	0.38	0.35	0.30	
4	0.88	0.80	0.70	0.60	0.55	0.50	0.45	0.43	0.40	

Possible Irrigation Scheduling Management Objectives

Maximum yield/biomass production
Maximum economic return
Keeping plants alive

-Moisture Accounting-Soil Water Reservoir

• TAW = (R_d) (AWC)

> TAW = total available water, (in. or mm)

•
$$AD = fd_{max} (TAW)$$

> AD = management allowed deficit, (in. or mm)

•
$$MB = fr_{min} (TAW)$$

MB = minimum balance (min. allowable available soil water), (in. or mm)

• TAW = AD + MB

Change in TAW as rooting depth increases

Plant Root Zones

Depth used for scheduling vs. maximum depth where roots are found
 Influenced by soil characteristics

 Soil texture
 Hardpan
 Bedrock

 Perennial vs. annual plants

	Maximum Effective		Maximum Effective
Crop	Depth, ft	Сгор	Depth, ft
Alfalfa	3.0 - 10	Onions	2.6 - 6.6
Banana	1.3 - 2.6	Other small grains	3.3 - 5.0
Barley	3.3 - 4.3	Palm trees	2.3 - 3.6
Beans	1.3 - 2.6	Peas	2.0 - 3.3
Cabbage	2.0 - 3.3	Peppers	1.7 - 3.3
Carrots	1.6 - 3.3	Pineapple	1.0 - 2.0
Celery	1.0 - 1.7	Potatoes	1.3 - 2.6
Citrus	3.3 - 5.9	Safflower	3.3 - 6.6
Clover	2.0 - 3.0	Sisal	1.7 - 3.3
Cotton	3.3 - 6.6	Sorghum	3.3 - 6.6
Cucumber	2.3 - 4.0	Soybeans	2.6 - 5.0
Dates	5.0 - 8.3	Spinach	1.0 - 1.7
December orchards	3.3 - 9.9	Strawberries	0.7 - 1.0
Flax	3.3 - 5.0	Sugarbeet .	2.6 - 6.6
Grapes	3.3 - 6.6	Sugarcane	4.0 - 6.6
Grass	1.7 - 5.0	Sunflower	3.3 - 8.3
Groundnuts	1.7 - 3.3	Sweetpotatoes	3.3 - 5.0
Lettuce	1.0 - 1.7	Tobacco	1.7 - 3.3
Maize	3.3 - 6.6	Tomatoes	2.3 - 5.0
Melons	3.3 - 5.0	Vegetables	1.0 - 2.0
Olives	2.6 - 6.6	Wheat	3.3 - 6.6

Table 6.2. Range of maximum effective rooting depths for fully grown plants.

Modified from Doorenbos and Pruitt (1977).

Root Development of Annual Plants

Days after planting

Example 6.2

Determine the root zone depth for corn at early tassel assuming that depth at germination is 6 inches, maximum rooting depth is 4 feet, full depth occurs 90 days after germination, and early tassel occurs 50 days after germination.

Given:

 $D_{ag} = 50 \text{ days,}$ $D_{tm} = 90 \text{ days,}$ $R_{dmin} = 0.5 \text{ feet, and}$ $R_{dmax} = 4.0 \text{ feet.}$

Find:

R_d at early tassel.

Use Equations 6.6 and 6.7

$$R_f = \frac{50 \ days}{90 \ days} = 0.56$$

 $R_d = 0.5 \text{ ft} + (4.0 \text{ ft} - 0.5 \text{ ft}) 0.56 = 2.5 \text{ feet}$

4-3-2-1 Rule-of-Thumb

Divide the crop root depth into quarters
Upper ¹/₄ provides 40% of water uptake
2nd ¹/₄ provides 30% of water uptake
3rd ¹/₄ provides 20% of water uptake
Lowest ¹/₄ provides only 10% of water uptake

- Applies only when most of root zone irrigated to field capacity
- Dictated by distribution of root mass

Maximum vs. Effective Rooting Depth

Figure 6.4. Average moisture extraction from the plant root zone, the 4-3-2-1 rule.

Irrigation Timing

Maximum irrigation interval, (days)

Actual irrigation interval, (days)

 $d_e = effective depth of irrigation, (in. or mm)$

$LD = \frac{AD - SWD}{ET_c(forecast)}$

- LD = maximum number of days before irrigation should occur
- ET_c(forecast) can be based on long-term averages or last few days

Figure 6.5. Illustration of LD concept.

Example 6.3

Field beans (crop group 3) are being grown in a fine sandy loam soil (AWC = 0.13 in/in). The feel and appearance method for determining soil water revealed that the average $f_r = 0.80$ in the root zone. Determine the latest date for irrigation. Assume that the root zone depth is 24 inches, and ET_c of the unstressed crop is 0.3 in/d.

<u>Given:</u> AWC = 0.13 in/in, $R_d = 2$ feet = 24 in, Current $f_d = 0.20$, and ET_c (forecast) = 0.30 in/d.

Find:	LD .
	$f_{dmax} = 0.38$
Solution:	AD = (24 in)(0.13 in/in)(0.38) = 1.2 in
	SWD = (24 in)(0.13 in/in)(0.20) = 0.6 in
	$LD = \frac{1.2 \ in - 0.6 \ in}{0.3 \ in/d} = 2 \ days$

Alternate solution:

Since

$$f_{dmax} = 0.38, f_{rmin} = 0.62$$

MB = (24 in)(0.13 in/in) (0.62) = 1.9 in
WB = (24 in)(0.13 in/in) (0.80) = 2.5 in
LD = $\frac{2.5 \ in - 1.9 \ in}{0.3 \ in/d} = 2 \ days$

Earliest Date

$ED = \frac{r_a + d_{ep} - SWD}{ET_c(forecast)}$

ED = minimum number of days before irrigation should occur

• d_{ep} = planned effective depth of water

Image relation of the second secon

Earliest Date

Figure 6.7. Illustration of ED concept.

Example 6.4

Suppose in Example 6.3 that $d_{ep} = 0.5$ in, $r_a = 0.4$ in, and from the previous example, SWD = 0.6 in. Find the earliest date that you should irrigate.

 $\begin{array}{ll} \underline{\text{Given:}} & d_{ep} = 0.5 \text{ in} \\ r_a = 0.4 \text{ in} \\ \text{SWD} = 0.6 \text{ in} \end{array}$

Find: ED

Solution:

$$ED = \frac{(0.4 + 0.5) in - 0.6 in}{0.3 in/d} = 1 day$$

Since the ED date was 2 days, irrigation should occur either 1 or 2 days from now.

Components of Crop Root Zone Water Balance

Soil Water Budget Calculations SWD_i = SWD_{i-1} + ET_{c i-1} - d_{e i-1} - P_{e i-1} - U_{f i-1}

Subscripts:i = todayi-1 = yesterday(all quantities below in consistent depth units:inches, mm, etc.)SWD= soil water deficit ET_c = crop evapotranspiration d_e = effective irrigation P_e = effective precipitation U_f = upward flow of water from a shallow water table

Example 6.5

Corn is grown on a silt loam soil. The pertinent site conditions are:

Given:

 $f_{dmax} = 0.45,$ $R_d = 2.5 \text{ feet} = 30 \text{ in},$ AWC = 0.2 in/in, AD = (30 in)(0.2 in/in) (0.45) = 2.70 in, $r_a = \text{rainfall allowance} = 0.5 \text{ in},$ $d_{ep} = 1.1 \text{ inches, and}$ Depth to water table = 10 feet.

The SWDs at the start of June 25 were 2.2 and 0.80 inches for Locations 1 and 2 in the irrigated area, respectively. The ET_c and P_e for June 25-28 are known.

Find: Determine the LD and ED for each location for June 25-28.

Solution: Use Equations 6.10, 6.14 and 6.16

The results of the calculations are shown in the emphasized italics print in Table 6.6.

	Actual ET _c	Forecast ET _c	Pe	U _f	Location 1				Location 2			
Date					SWD	d _e	ED	LD	SWD	d _e	ED	LD
	(in/d)		(in)		(in)		(days)		(in)		(days)	
June 25					2.20		-	3	0.80		4	11
	0.20	0.18	0.0	0.0		0			1	0		
26					2.40		-	2	1.00		3	9
27	0.21	0.18	0.0	0.0	2.61	0			1	0	-	
21	0.13	0.18	03	0.0	1	11	-	1	1.21	0	2	8
28	0.15	0.10	0.5	0.0	1.34	1.1	1	8	1.04	0	3	9
1.11.22	0.17	0.18	0.0	0.0		0				0		

Table 6.6. Checkbook accounting in	rigation sched	uling data	sheet.
------------------------------------	----------------	------------	--------

* all numbers in bold italics are computed using equations in this chapter

.

Figure 6.8. Illustration of key irrigation scheduling terms and their changes with time for annual crops.

Other Irrigation Scheduling Methods

- Soil Water Measurement
 - > Determine SWD by measuring:
 - fr or fd (feel and appearance of soil)
 - θ_m (gravimetric sampling)
 - θ_v (neutron scattering)
 - ψ_p (potential: w/ tensiometers or resistance blocks (must convert ψ_p to water content)
 - > Need measurements at several locations
 - Need measurements throughout root zone depth
 - > Difficult to predict Latest Date
 - > Doesn't indicate how much water to apply

Other Irrigation Scheduling Methods

- Plant Status Indicators
 - Leaf water potential (energy status of leaf water)
 - Use pressure chamber or thermocouple psychrometer
 - Measured at mid-day; many samples needed
 - > Foliage/Air temperature difference
 - Well-watered plants cooler than air
 - Use infrared thermometer
 - > Leaf appearance
 - Color, wilting, etc.
 - Indicators show up too late
 - > Irrigate at critical growth stages (e.g.: flowering)

• 10 inchs of rain, 16.8 inches irrigation

600 gpm by depth

600 gpm cumulative water balance

 \bigcirc

It inches of rain, 12.8 inches of irrigation

400 gpm by depth

 \bigcirc

