Impacts of water stress on ET

- ET is only affected by Water stress when readily available water (RAW) is depleted
- Grow it is restricted, we want to avoid this if possible
- http://www.fao.org/ 0e0e.htm

Additional adjustments to Kc

http://www.fao.org/docrep/x0490e/x049 0e0b.htm

Efficiencies and Uniformities
 Application efficiency (E_a)

> d_n = net irrigation depth
> d_g = gross irrigation depth
> fraction or percentage
O Water losses
> Evaporation
> Drift

- > Runoff
- Deep percolation

Water Losses

PERCENT OF FIELD AREA

Application Uniformity

Distribution uniformity (DU)

- > d_{LQ} = average low-quarter depth of water received
- > $d_z = average depth applied$
- Popular parameter for surface irrigation systems in particular

Application Uniformity Cont'd...

Christiansen's Coefficient of Uniformity (CU)

$CU = 100 \left[1 - \sum_{i=1}^{n} \frac{|a_z - a_i|}{nd_z} \right]$

- > n = number of observations (each representing the same size area)
- > $d_z = average depth for all observations$
- > d_i = depth for observation i
- Popular parameter for sprinkler and microirrigation systems in particular
 For relatively high uniformities (CU > 70%),

Turf Sprinkler Uniformity Test (catch cans placed on a 5 ft x 5 ft grid)

TE

THIN

1

1

Adequacy

- Because of nonuniformity, there is a tradeoff between excessive deep percolation and plant water stress
- Adequacy: the percent of the irrigated area that receives the desired depth of water or more

Figure 5.3a

Figure 5.3c

Figure 5.3d

Same adequacy but different uniformities and Ea's

Same uniformity but different adequacies and Ea's

Conveyance Losses

Application Efficiency of The Low Quarter (AELQ)

- Ratio of the average low-quarter depth of water that infiltrates and is stored in the crop root zone relative to the average depth of water applied (x 100 for %)
- AELQ = DU when all applied water infiltrates
- Also AELH (low-half)
- Accurate rules of thumb
 - for 90% adequacy, apply a gross depth = (desired net depth)/AELQ (acceptable for higher-valued crops)
 - For 80% adequacy, apply a gross depth = (desired net depth)/AELH (acceptable for lower-valued crops)

System Capacity

- Net system capacity (Q_n)
 - Function of plant needs (keep soil water balance above some specified level)
 - > The rate at which water must be stored in the root zone
- Peak ET method:
 - Provide enough capacity to meet peak ET over a given time period
- Less conservative method:
 - Recognize that rainfall and/or soil water can allow a reduced capacity
 - Water stored in the soil can provide a buffer over short time periods
 - Also, over longer time periods, concept of an allowable depletion (AD) -- amount of water that can be depleted from the soil before plant stress occurs

System Capacity

Gross system capacity (Q_g)

- The rate at which water must be supplied by the water source
- > A function of:
 - the net system capacity, Q_n
 - the efficiency of the irrigation system
 - the system downtime

System Capacity

Definition

- <u>Required</u> system capacity is the water supply rate that must be provided to prevent plant water stress (may or may not = <u>actual</u> system capacity)
- Units could be inches per day or gpm per acre or gpm over a given area (Q_n & Q_g must be in consistent units)

- Q_g = gross system capacity, in/day or gpm/A
- Q_n = net system capacity, in/day or gpm/A
- AELQ = application efficiency of low quarter, (%)
- > D_t = irrigation system downtime (%)

 \odot Q_n=4gpm/acre=0.2 inches/day • AELQ=80% ● D_t=1 Q_a=5 gpm/acre > =625gpm/pivot • If AELQ=70 Then Q_a=5.8 gpm/acre > =725 gpm/acre AELQ includes application efficiency and uniformity

Operational Terminology

Set or zone:

- Smallest portion of the total area that can be irrigated separately
- Application time :
 - Length of time that water is applied to a set/zone

• Set time :

- Time between starting successive sets in a field
 - Application time = set time if system is not stopped to change sets (automated vs. manual systems

Operational Terminology

• Cycle time or irrigation interval:

- Length of time between successive irrigations
- Idle time:
 - Time during the irrigation interval that the system is not operated

Duration:

Time that water is provided to the farm by an irrigation district

Rotation:

 Time between times when the water is provided by the district

Irrigation Scheduling

General Approaches

Maintain soil moisture within desired limits

- > direct measurement
- > moisture accounting

Use plant status indicators to trigger irrigation

- > wilting, leaf rolling, leaf color
- > canopy-air temperature difference

Irrigate according to calendar or fixed schedule

- > Irrigation district delivery schedule
- > Watching the neighbors

Yield/Appearance vs. ET_c

ETc