Water Measurement

Units

Volume

- Quantity of water; Water "at rest"
- Gallon, cubic foot, etc.
- V = A d (units: acre-inch, acre-foot, hectare-meter etc.)
- Depth
 - Rainfall measured as depth; Useful for irrigation applications as well
 - Inch, foot, millimeter, centimeter, etc.
 - D = V / A (units: usually inches or millimeters)
- Flow
 - Volume of water per unit time; Water "in motion"
 - Gallons per minute, cubic feet per second, acre-inches per day, liters per second, cubic meters per second etc.
 Q = V / t (units must be consistent)

English System	Metric System		
Volun	ne Units		
1 gallon = 8.33 pounds	1 cubic foot = 0.02832 cubic meters		
1 cubic foot = 7.48 gallons	1 liter = 0.264 gallons		
1 acre-inch = 3,630 cubic feet	1 gallon = 3.79 liters		
1 acre-inch = 27,154 gallons	1 cubic meter = 264.2 gallons		
1 acre-foot = 43,560 cubic feet	$1 \text{ cm}^3 = 1 \text{mL}$		
1 acre-foot = 325,851 gallons			
Flow	v Units		
1 cfs = 449 gpm (450 for practical purposes)	1 cfs = 0.02832 cms		
1 cfs = 1 acre-inch/hr	1 cms = 35.31 cfs		
452 gpm (450 for practical purposes) = 1 acre-inch/hr	1 gpm = 0.06309 L/s		
1 gpm = 0.00223 cfs	1 L/s = 15.85 gpm		
1 gpm = 0.00221 acre-inches/h	1 gal/h = 63.1 mL/s		
Lengt	th Units		
1 mile = 5280 feet	1 foot = 0.3048 meters		
1 rod = 16.5 feet	1 meter = 3.281 feet		
Area	Units		
1 acre = 43,560 square feet	1 acre = 0.4047 hectare		
	1 hectare (ha) = 2.471 acres		
fs = cubic feet per second gpm = gallons per mi	inute		
ms = cubic meters per second L/s = liters per second	d		

Table 3.1. Conversion factors used in water measurement.

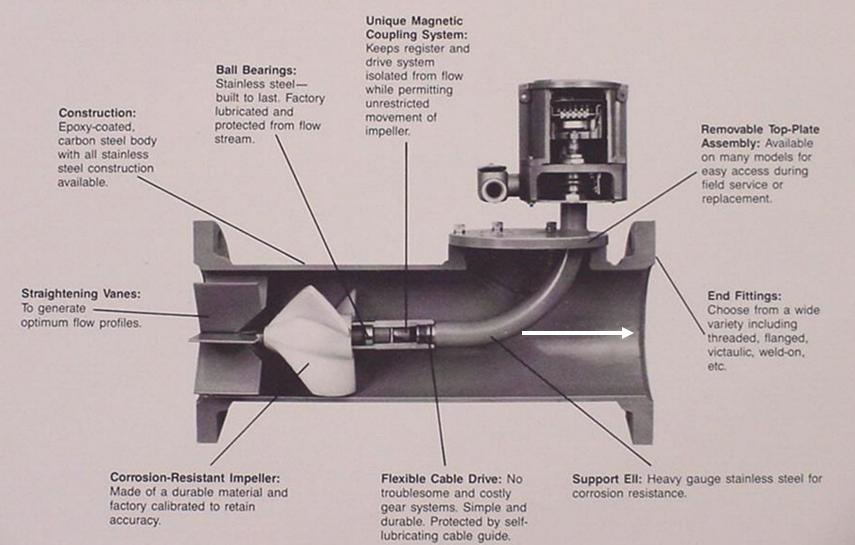
- Volume balance (Qt=Ad)
 - -V = Q t and V = A d, so Q t = A d
 - (Flow rate) x (time) = (area) x (depth)
 - Knowing any of the three factors, you can solve for the fourth
 - Units must be consistent (conversion constant, k_v, to balance units: Qt=k_vAd)

English Units Conversion for Irrigation Flows

Values of conversion constant, \mathbf{k}_{v} , based on combinations of units.

Q,	t,	A, Units for Area			
Flow Rate Units	Time Units	Acres d, Depth Units		Square Feet d, Depth Units	
		inches	feet	inches	feet
gallons/minute (gpm)	minutes	27,150	325,830	0.62	7.48
	hours	453	5,430	0.0104	0.125
	days	18.9	226	0.000433	0.00519
cubic feet/second (ft ³ /sec) (cfs)	minutes	60.5	726	0.00139	0.0167
	hours	1.01	12.1	0.0000231	0.000278
	days	0.042	0.50	0.000000965	0.0000116

Flow Measurement


- "Good water management begins with water measurement"
- Basic principle
 - $Q = V_m A_f$
 - Q = flow rate in a pipeline or channel
 - V_m = mean or average velocity of flow in the pipeline or channel
 - $-A_f = cross-sectional area of flow$
- Velocity is not constant throughout the cross-section

Flow Measurement in Pipelines

- Mechanical meters
- Propeller senses velocity; Converted to flow rate via gear ratios
 - Straight section of pipe is best (avoid turbulence);
 Pipe must be full
- Pressure differential methods
 - Difference in pressure is directly related to velocity (fundamental energy relationship in hydraulics)
 - Pitot tubes, Venturi meters, orifice methods
- Ultrasonic methods
 - Non-intrusive (transducers clamped on the outside of the pipe)

Typical Propeller Flow Meter

With Built-In Features

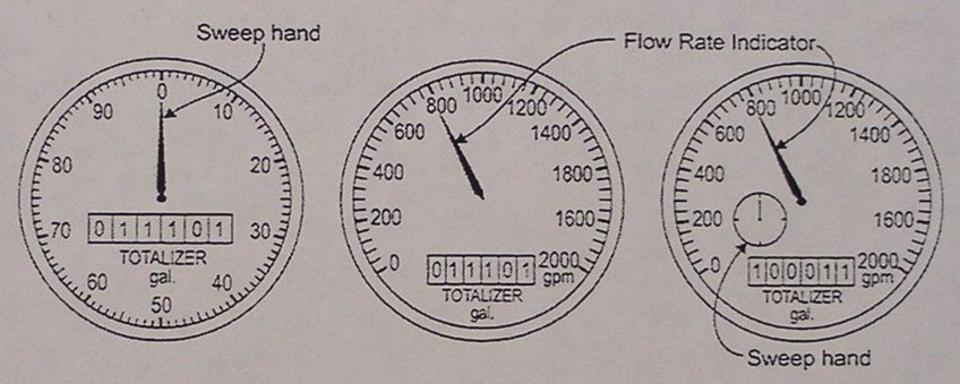
A "Bolt-On Saddle" Propeller Flow Meter

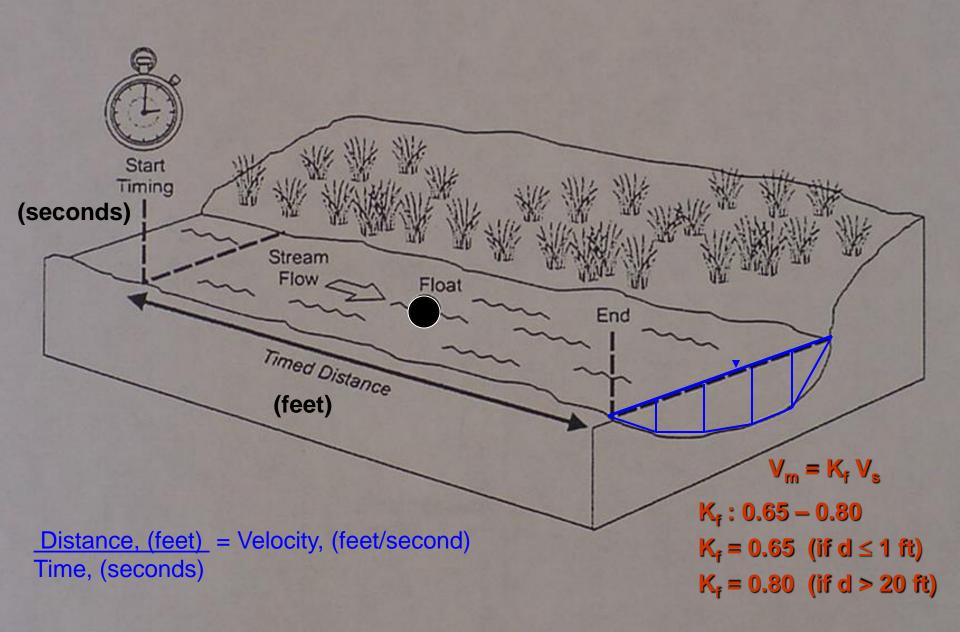
Æ

MC CROMMT

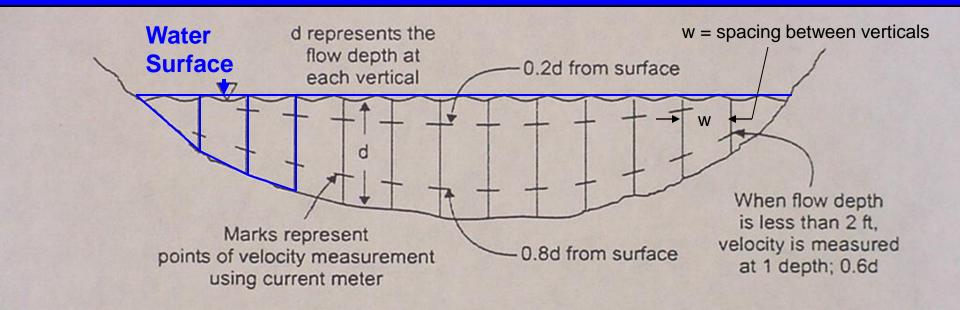
LOW

Options for Propeller Meter Read-Outs

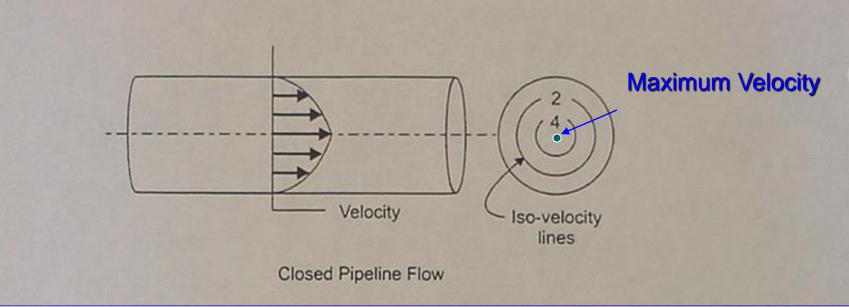


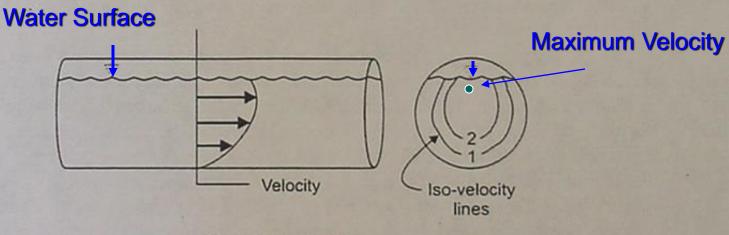

Figure 3.5. Options available for registers on a propeller meter.

Open Channels


- Different from pipe flow because water surface is at atmospheric pressure
- Velocity methods $(Q = V_m A_f)$
 - Current meter (measure velocity at a number of points in the cross-section using a calibrated meter)
 - Float method ($V_m = K_f V_s$ where V_s is surface velocity measured with a float, and K_f is a velocity correction factor ranging from 0.65 to 0.8)

Estimating Surface Velocity, V_s, of a Straight Stream with a Float and Stopwatch




Estimating the Cross-Sectional Area of Flow, A_f Dividing the Streambed into Triangles, Rectangles and Trapezoids

- Rectangle Area $A_r = d w$
- Trapezoid Area, $A_{tz} = \frac{1}{2} (d_i + d_{i+1}) w$
- Triangle Area, $A_{tr} = \frac{1}{2} d w$

Velocity Profiles

Open Channel Flow

Open Channels Contd...

- Pressure differential methods
 - Contract the flow through a metering section, and measure the depth of water upstream of the metering section
 - Use a calibrated depth-flow relationship
 - Weirs -- rectangular, trapezoidal, triangular
 - Flumes -- many types
 - Submerged orifices

Weir Shapes and Formulas

Measuring Device (all sharp crested)	Vie (H and L are in f	Formula	
Rectangular Weir (without contraction)			$Q = 3.33 LH^{3/2}$
Rectangular Weir (with contraction)	L L (L-0.2H) Top view	H H Side view	$Q = 3.33 (L - 0.2H) H^{3/2}$
Trapezoidal Weir	4 I End view		$Q = 3.37 LH^{3/2}$
90° Triangular Weir	90° TH End view		$Q = 2.49 H^{5/2}$