Purpose of Tillage

- Weed Control
- Decomposition of crop residue
- Prepare seed bed
- Increase soil temperature
- Alleviate compaction
Conservation Tillage

• The term encompasses many tillage practices
• Traditionally the NRCS used this term for any tillage system resulting in 30% or more residue cover at planting of the next crop
 – Mulch tillage = full width tillage with at least 30% residue cover.
• This was generally acceptable to reduce erosion to below T if structural controls were in place
Residue Cover for Sorghum

- 7,000 lbs/A, 80 percent cover, 2,200 lbs SGe
- 700 lbs/A, 30 percent cover, 240 lbs SGe
- 2,300 lbs/A, 50 percent cover, 775 lbs SGe
- 590 lbs/A, 15 percent cover, 200 lbs SGe
Residue Cover for Wheat

1,200 lbs/A 75 percent cover 1,900 lbs SGe

350 lbs/A 25 percent cover 700 lbs SGe

875 lbs/A 45 percent cover 1,400 lbs SGe

225 lbs/A 15 percent cover 500 lbs SGe
Line Transect Method for Determination of Residue Cover

- Pull a tape measure to 100 ft
- Count the # of foot marks that touch a piece of residue
- Residue should be greater than 3/32 inch to be counted
- University of Nebraska Factsheet

http://www.itap.purdue.edu/tlt/facultyshowcase/ifarm/index.cfm Picture
Estimating Residue From a Tillage System

- Missouri factsheet on conservation tillage planning
- Residue cover can be estimated based on yield of crop, and type of tillage used.
Primary and Secondary tillage

• Primary:
 – Provide initial fracture of soil surface
 – Initiate the decomposition of residue
 – Kill weeds

• Secondary:
 – Seedbed preparation
 • firm soil and break clods
 – Weed control
 – Countless Options!
Primary Tillage Implements

- Moldboard plow
 - Full inversion of soil surface
 - Removes 90 to 100% of residue
 - 10-12 inches deep
Primary Tillage Implements

• Heavy Offset Disk
 – Can bury 40 to 75% of residue depending on depth and ground speed.
Primary Tillage Implements

- **Chisel**
 - Can be pulled as deep as 10 inches or bit more?
 - Sweeps and twisted points bury more residue than straight shanks
Secondary Tillage

• Cultivator
 – Lighter shanks than chisel
Secondary

• Harrow
 – Smooth the surface
Combination equipment

Disk ripper

Coulters followed by rotary harrow
Estimating Residue From a Tillage system

- Missouri factsheet on conservation tillage planning
- Residue cover can be estimated based on yield of crop, and type of tillage used.
Soil Tillage Intensity Rating (STIR)

- Value calculated from RUSLE2
- Low #'s represent less overall soil disturbance
- No-till must have a STIR less than 15%
- Values are influenced by:
 - Operational speed
 - Tillage type and depth
 - Percent of soil surface disturbed
- Provide better assessment of soil quality degradation
- NRCS Factsheet
“Conservation” Tillage Equipment

• Sweep plow:
 – Under cuts soil and weeds
 – Most common primary tillage in stubble mulch system
 – Sweeps blades can range from 6ft to 8 inches
 – Wide blades minimizes surface disturbance
Conservation” Tillage (Vertical Tillage)

- Designed for a single pass tillage operation combined with capacity to plant into high residue
 - Residue to break down faster (Bt corn)
 - Anchor so it doesn’t wash or blow
 - Some levelling capability—improves “plantability”
 - Seedbed preparation

- This is a diverse class of equipment
 - Some are very aggressive, while others simply cut residue and fracture surface
Landoll

Great Plains

Conservation Tillage: >30% crop residue on the soil surface
Mulch Tillage: Full width tillage that leaves >30% residue on the surface

Vertical tillage is not no-till (NRCS...), it is mulch tillage, which is conservation tillage

Other forms of Conservation Tillage include: No-till, Strip-till, and Ridge
Vertical tillage: 2009 soybean yield (Kansas, No-Till fields)

- NT yield: 65.9
- VT yield: 67.1
- Not significant at $p<0.05$
2010 Results: Meade Co.
Continuous, Irrigated Corn

<table>
<thead>
<tr>
<th></th>
<th>Stand *1000/ac</th>
<th>Disease % pop</th>
<th>Severity lesions/plt</th>
<th>Yield bu/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-till</td>
<td>29.9</td>
<td>90.0</td>
<td>78.5</td>
<td>195</td>
</tr>
<tr>
<td>Case</td>
<td>30.3</td>
<td>89.5</td>
<td>83.8</td>
<td>204</td>
</tr>
<tr>
<td>Landoll</td>
<td>29.7</td>
<td>91.8</td>
<td>96.0</td>
<td>190</td>
</tr>
<tr>
<td>Great Plains</td>
<td>29.8</td>
<td>89.3</td>
<td>89.8</td>
<td>204</td>
</tr>
<tr>
<td>LSD*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

High levels of disease on all treatments

*0.05 level, all sites
2010 Results: Jefferson Co. Continuous Corn

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Stand *1000/ac</th>
<th>Disease % pop</th>
<th>Severity lesions/plt</th>
<th>Yield bu/ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>No-till</td>
<td>35.7</td>
<td>26.0 a</td>
<td>71.8 a</td>
<td>154</td>
</tr>
<tr>
<td>Case</td>
<td>37.6</td>
<td>17.0 b</td>
<td>46.3 b</td>
<td>176</td>
</tr>
<tr>
<td>Disk</td>
<td>38.2</td>
<td>16.0 b</td>
<td>42.8 b</td>
<td>154</td>
</tr>
<tr>
<td>LSD</td>
<td>--</td>
<td>1.9</td>
<td>6.4</td>
<td>--</td>
</tr>
</tbody>
</table>

Difference in disease didn’t translate into significant difference in yield