Purpose of Tillage

- Weed Control
- Decomposition of crop residue
- Prepare seed bed
- Increase soil temperature
- Alleviate compaction

Conservation Tillage

- The term encompasses many tillage practices
- Traditionally the NRCS used this term for any tillage system resulting in 30% or more residue cover at planting of the next crop
 - Mulch tillage = full width tillage with at least 30% residue cover.
- This was generally acceptable to reduce erosion to below T if structural controls were in place

Residue Cover for Sorghum

7,000 lbs/A 80 percent cover 2,200 lbs SGe

2,300 lbs/A 50 percent cover 775 lbs SGe

590 lbs/A 15 percent cover 200 lbs SGe

Residue Cover for Wheat

1,200 lbs/A 75 percent cover 1,900 lbs SGe

875 lbs/A 45 percent cover 1,400 lbs SGe

350 lbs/A 25 percent cover 700 lbs SGe

225 lbs/A 15 percent cover 500 lbs SGe

Line Transect Method for Determination of Residue Cover

- Pull a tape measure to 100 ft
- Count the # of foot marks that touch a piece of residue
- Residue should be greater than 3/32 inch to be counted

• University of Nebraska Factsheet

Estimating Residue From a Tillage System

- Missouri <u>factsheet</u> on conservation tillage planning
- Residue cover can be estimated based on yield of crop, and type of tillage used.

Primary and Secondary tillage

- Primary:
 - Provide initial fracture of soil surface
 - Initiate the decomposition of residue
 - Kill weeds
- Secondary:
 - Seedbed preparation
 - firm soil and break clods
 - Weed control
 - Countless Options!

Primary Tillage Implements

- Moldboard plow
 - Full inversion of soil surface
 - Removes 90 to 100% of residue
 - 10-12 inches deep

Primary Tillage Implements

- Heavy Offset Disk
 - Can bury 40 to 75% of residue depending on depth and ground speed.

Primary Tillage Implements

- Chisel
 - Can be pulled as deep as 10 inches or bit more?
 - Sweeps and twisted points bury more residue than straight shanks

Secondary Tillage

- Cultivator
 - Lighter shanks than chisel

Secondary

• Harrow

Smooth the surface

Combination equipment

Estimating Residue From a Tillage system

- Missouri <u>factsheet</u> on conservation tillage planning
- Residue cover can be estimated based on yield of crop, and type of tillage used.

Soil Tillage Intensity Rating (STIR)

- Value calculated from RUSLE2
- Low #'s represent less overall soil disturbance
- No-till must have a STIR less than 15%
- Values are influenced by:
 - Operational speed
 - Tillage type and depth
 - Percent of soil surface disturbed
- Provide better assessment of soil quality degradation
- NRCS <u>Factsheet</u>

"Conservation" Tillage Equipment

• Sweep plow:

- Under cuts soil and weeds
- Most common primary tillage in stubble mulch system
- Sweeps blades can range from 6ft to 8 inches
- Wide blades minimizes surface disturbance

Conservation" Tillage (Vertical Tillage)

- Designed for a single pass tillage operation combined with capacity to plant into high residue
 - Residue to break down faster (Bt corn)
 - Anchor so it doesn't wash or blow
 - Some levelling capability—improves "plantability"
 - Seedbed preparation
- This is a diverse class of equipment
 - Some are very aggressive, while others simply cut residue and fracture surface

Conservation Tillage: >30% crop residue on the soil surface Mulch Tillage: Full width tillage that leaves >30% residue on the surface

GRE

Rai

Vertical tillage is not no-till (NRCS...), it is mulch tillage, which is conservation tillage

Lando

Other forms of Conservation Tillage include: No-till, Strip-till, and Ridge

Vertical tillage: 2009 soybean yield (Kansas, No-Till fields)

- NT yield: 65.9
- VT yield: 67.1
- Not significant at p<0.05

2010 Results: Meade Co. Continuous, Irrigated Corn

	Stand	Disease	Severity	Yield
	*1000/ac	% pop	lesions/plt	bu/ac
No-till	29.9	90.0	78.5	195
Case	30.3	89.5	83.8	204
Landoll	29.7	91.8	96.0	190
Great Plains	29.8	89.3	89.8	204
LSD*				

High levels of disease on all treatments

*0.05 level, all sites

2010 Results: Jefferson Co. Continuous Corn

	Stand	Disease	Severity	Yield
	*1000/ac	% pop	lesions/plt	bu/ac
No-till	35.7	26.0 a	71.8 a	154
Case	37.6	17.0 b	46.3 b	176
Disk	38.2	16.0 b	42.8 b	154
LSD		1.9	6.4	

Difference in disease didn't translate into significant difference in yield