Nitrous Oxide emissions from Ag Soil Management and GHG Credits

Jason Warren
Oklahoma State University
Why are we Talking About N$_2$O

• It’s a potent Greenhouse Gass
 – Its global warming potential is 300 times greater than CO$_2$

• EPA estimates that 68% of N$_2$O emissions come from Ag Soil Management
 – Inorganic N, manure N, and leguminous N

• Represents approximately 3% of total U.S. GHG emissions
Why are we Talking About N$_2$O

• It’s an ozone depleting gas
• International treaties in the 1990’s phased out CFC’s
• Now N$_2$O is the #1 ozone depleting gas emitted by human activity

Greenhouse Credit from Reductions in N$_2$O emissions

- Reducing its emission can produce a marketable GHG credit
- Similar to carbon credit
- N$_2$O credits are for Avoidance
 - Much more attractive to EPA and GHG credit buyers
- Carbon credits are for Sequestration or removal
 - Sequestration has a problem with permanency
 - No-till soils can be tilled, releasing CO$_2$
California’s Effort to Reduce GHG Emissions

- In Oct. 2010 California voted to adopt cap and trade
- This provides a market for GHG credits
- Currently, many efforts are being made to develop protocols to generate GHG credits from N$_2$O emission reductions
 - Protocols outline the requirements for the generation of GHG credit.
Activities in Oklahoma

• OSU Extension and the OCC were asked to participated in a pilot project partially funded by the USDA.
 • National Wildlife Federation
 • Delta Institute
 • Conservation Technology Information Center
 • American Farmland Trust
 • DNDC Applications, Research and Training, LLC
 • EKO Asset Management Partners
 • American Carbon Registry
Activities in Oklahoma

• Project Goals:
 – Evaluate effectiveness of different BMPs in reducing N$_2$O emission, thereby creating a GHG credit
 – Contract with producers to sell GHG credits generated though adoption of BMP’s

• OSU Extension
 – Provide technical expertise on Best Management Practices to reduce N$_2$O emissions
How is a GHG Credit Generated?

- A credit is generated when a practice is adopted that reduces N_2O emissions compared to business as usual.
Generating a N_2O credit

- Water quality concerns associated with N fertilizers are localized within a watershed.
 - Problems can be solved by simply reducing N fertilizer applications in watershed regardless of impact on crop production

- N_2O emissions is a global issue
 - Reducing crop production is not an option
Nature of Global Air Quality Issues

• Decreased production in a locality due to decreased N fertilizer application will be offset by production increases somewhere else
 – No change in net N$_2$O emissions

• We must decrease emissions without decreasing productivity
What Factors Influence N_2O Emissions

• N_2O is produced during denitrification and nitrification
 – Occurs in oxygen depleted conditions
• Emissions are influenced by soil moisture, organic matter, temperature and inorganic N concentrations
• Emissions are similar for Urea, $\text{NH}_4\text{,}$ and NO_3 containing fertilizers
What Factors Influence N_2O Emissions

• Moisture:
 – Emission will occur at 60% water filled pore space
 • In a silt loam = 30% moisture by weight
 – Anoxic or oxygen depleted conditions
N\textsubscript{2}O Emissions will Spike after Rainfall Event

Forage Sorghum
Stillwater, 2010
Relationship between N_2O emissions and N Rate

• Rule of Thumb:
 – 0.01 lbs N_2O per lbs N fertilizer applied.

• Data from Stillwater in 2010-11 shows
 – 0.014 lbs per lbs

\[
\text{N}_2\text{O} \text{ Emissions} = 0.0141 \text{N rate} + 1.1644
\]
How can we decrease N_2O?

• Many environmental groups believe we can simply decrease N rates?
 – Some research from across the U.S. suggest this is correct.

• Enhanced N fertilizers have shown some promise but results are not consistent?

• Utilization of leguminous cover crops

• Split applications of N fertilizer
Decreasing N Rates?

• Assumes that producers over apply fertilizers
 – Sometimes they do
• How are N fertilizer rates determined?
Basis of N Recommendations

• Yield Goal!
 – Average yield
 • Can be calculated from historic yields
 – Maximum yield
 • Doesn’t happen very often
 – Potential yield
 • Difficult to determine without some help

• If yield goal is somewhere between average yield and maximum we are more often than not over applying.
Our primary approach in Oklahoma

• Utilize sensor based technology to determine potential wheat yield and topdress N rate
 – Increases NUE?
 – Maintains or increased Yield?
 – Create GHG credits?
Our primary approach in Oklahoma

• Drawback to this approach is that it will not always decrease N$_2$O emissions per acre
 – SBNM can recommend N applications that are higher than business as usual (Farmer Practice)
 – Currently GHG credits are valued on a per acre basis
 – A GHG credit will not be generated every year?
• SBNM will decrease N$_2$O emissions per bushel
 – Perhaps this is how credits should be valued
There are other options.

- There is very little data for this region of the U.S.
- Application timing may be very important to reducing N_2O emission
Application of N Fertilizer prior to Rainfall Event

Stillwater, 2011
Application of N Fertilizer prior to Rainfall Event

Forage Sorghum
Stillwater, 2010
How will Split Applications impact N2O emissions

• For summer crops N$_2$O emissions may be increased sidedress?

• For Wheat and Canola we should get a significant decrease in N$_2$O emissions from split applying N

• Research is needed
Generating a GHG Credits

• A credit will be generated when a BMP is implemented that decreases N$_2$O emissions compared to business as usual.

100 % preplant \leftrightarrow Split applications
Split applications \leftrightarrow Sensor based Rec.
Summary

• N_2O represents a small fraction of the total GHGs emitted into atmosphere annually

• There are many efforts underway to create protocols for the generation of GHG credits based on reductions in N2O emissions

• I believe they must result in increased NUE to be agronomic ally and environmentally sound
Questions

• Jason.warren@okstate.edu
• 405-744-1721