No-Till

• Sections 8.9 through 8.12 in Blanco and Lal were used as reference
Benefits of No-till for Crop Production
(Table 8.3 page 203)

- Prevents crusting
- Reduces wind erosion and crop abrasion
- Reduces scour and burial from water erosion
- Reduces nutrient loss from erosion
- Increases soil organic matter
- Increased microbial activity
- Increases nutrient cycling through residue retention
- Reduces diurnal fluctuations in soil temperature
- Decreases rate of evaporation from soil surface
- Reduces surface soil moisture fluctuation
- Reduced tillage and labor costs
Benefits of No-till for the Environment

• Water Quality
 – Nutrient, and sediment loads are decreased
 – In regions where herbicides are used regardless of tillage, they too can be decreased in runoff

• Wild life habitat
 – Pheasant in the high plains provides an example

• Carbon sequestration

• Albedo (reflectivity) of the surface can be increased
 – MAY contribute to mitigation of climate change
Environmental Challenges in using No-till

- Increased herbicide use
- Stratification of nutrients resulting in increased risk of dissolved nutrient runoff.
- Improvements in macroporosity and water infiltration can cause increased leaching
 - Particularly concerning in systems with subsurface drainage
Challenges to No-Till

- Herbicide Resistance
- Increased management requirements
- Crop rotations must be developed
- Soil compaction
- Must be more selective with regard to planting conditions
 - For example should wait until residues are dry
 - “Dusting in” a crop is more challenging but can be done in no-till
Challenges to No-Till

• Grazing No-Till
 – Recent studies have shown that grazing can improve microbial activity and nutrient cycling
 – Dual purpose no-till has been shown to be equally successful as tillage systems
 – Fall forage production can be lower however, weight gains are generally similar because cattle don’t bog down during wet conditions
 – Earlier planting may also overcome cooler soil temps
 • However, this must be weighted against pest pressure that can occur in early planted wheat
Other challenges to No-till Grazing

• Must be careful not to over graze
 – Residue management is critical
 – Sufficient residue must be maintained to protect the soil surface
Grazing No-till

- Residue will prevent crusting and further deterioration of soil condition during fallow period
- Wetting and drying cycles will alleviate compaction
- Maintenance of residue or green growing plants also ensure active root growth which prevent compaction
Grazing No-till

• If severe compaction results from gazing deep tillage is not required
• Grazing generally will only compact soil at 0-4 inches
• Shallow ripping will break up compaction from grazing
Soil Structural Improvements

• Removal of tillage from the system allows soil structure to improve
• Macropores formed from shrink/swell, root growth, and worm borrowing can be maintained
• Surface residues are critical for maintaining this structure
 – Protect surface from crusting
 – Provide organic matter for biological activity and aggregate stability
Soil Structural Improvements

• Bare surface of a 15 year old no-till soil after cotton followed by sesame
Soil Structural Improvements

• Worm casts cover the soil surface
Soil Structural Improvements

• A high residue crop is needed to protect this soil from degradation
Surface Evidence of Soil Structure

- Worm casts under residue
Surface Evidence of Soil Structure

- 70 bushel double crop sorghum after 50 bushel wheat
Topsoil structure

• Granular or small blocky structure is preferred in surface soil

• Tillage temporarily improves soil tilth (section 8.2)
 – Reconsolidation results in massive structure
 – This is why residue maintenance is so important
 • Prevents crusting
 • Cover crops in the early years of adoption may also help by providing root growth during fallow period
Benefits of Structure

• Increased Macroporosity improves air, water and root movement in soils

• As structure improves so will:
 – Root respiration
 – Water availability
 – Nutrient uptake

• Runoff may also decrease
Influence of No-Till on Evaporation

• Maintenance of crop residues decreases the rate of evaporation
 – It does not eliminate it

• In environments like Oklahoma evaporation represents the largest loss of water from a summer fallow system

• No-till can decrease this loss and make double crops and summer more successful
Soil Water in 0-15 inch Depth at Lahoma (7/09-6/11)

- Surface soil moisture is generally higher in NT
 - Reduced Evaporative Water Loss
Soil Water in 4 ft Profile at Lahoma (7/09-6/11)

- Effect of tillage is reduced
July 2009

![Soil Depth Graph]

- **Soil Depth (inches)**
 - 90
 - 80
 - 70
 - 60
 - 50
 - 40
 - 30
 - 20
 - 10
 - 0

- **Water Content (Inches H₂O/Inch soil)**
 - 0
 - 0.1
 - 0.2
 - 0.3
 - 0.4

- **Soil Depth (inches) vs. Water Content**
 - Conv. Wheat
 - NT Wheat
Wheat Yields at Lahoma

<table>
<thead>
<tr>
<th>Cropping System</th>
<th>Yield Bu/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>Conv. Wheat</td>
<td>36</td>
</tr>
<tr>
<td>NT Wheat</td>
<td>38</td>
</tr>
<tr>
<td>NT Wheat After Canola</td>
<td>41</td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>Conv. Wheat</td>
<td>43</td>
</tr>
<tr>
<td>NT Wheat</td>
<td>44</td>
</tr>
<tr>
<td>NT Wheat After Summer Crops</td>
<td>50</td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>Conv. Wheat</td>
<td>37</td>
</tr>
<tr>
<td>NT Wheat</td>
<td>31</td>
</tr>
<tr>
<td>NT Wheat Second Year After Summer Crops</td>
<td>34</td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>CT Wheat</td>
<td>64</td>
</tr>
<tr>
<td>NT Wheat</td>
<td>65</td>
</tr>
<tr>
<td>NT Wheat After Canola</td>
<td>74</td>
</tr>
<tr>
<td>NT Wheat After Summer Crops</td>
<td>53</td>
</tr>
</tbody>
</table>
Average Yields at Lahoma

<table>
<thead>
<tr>
<th>Cropping System</th>
<th>Yield Bu/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT Wheat</td>
<td>45</td>
</tr>
<tr>
<td>NT Wheat</td>
<td>44</td>
</tr>
<tr>
<td>NT Wheat After Canola</td>
<td>57</td>
</tr>
<tr>
<td>NT Wheat After Summer Crops</td>
<td>46</td>
</tr>
</tbody>
</table>
Long-Term Wheat Yields in Goodwell
Long-Term Sorghum Yields in Goodwell
Soil Temperature under No-till

- Crop residues decrease soil temperature in summer months
- Can increase soil temps in winter due to insulation
Soil Temperature under No-till

• Decreased summer soil temps can benefit late spring planted crops
 – Soybeans

• Decreased temps can be a challenge for early planted crops:
 – corn
Soil Compaction

- All soils managed using modern mechanical agricultural practices are compact
- The extent of compaction and its impact on productivity is dependent on soil type and management
- Surface compaction is of specific concern for no-till soils
 - Cannot be tilled away
Soil Compaction

• Greater efforts to limit traffic during wet periods are needed in No-till

• Controlled traffic becomes a more attractive management option for no-till systems
 – Prevents whole field compaction
 – Compacted traffic lanes allow for more rapid entry into field after rainfall events
An Example of a Controlled Traffic Program

• The key is to minimize the annual footprint.
 – Wide traffic lanes increase the area that could be negatively impacted by traffic
 – The system would be best served by not utilizing duals and eliminating field activities during wet conditions.
An Example of a Controlled Traffic Program

• Precision driving would help in row crops.
 – Will keep tracks in the inter-row space
 – Would not be as effective in the wheat crop

• Tram lines would provide for precision driving in a wheat system
A Brief History of No-Till

• The Earliest forms of No-till were adopted during the 1960 in the U.S.
• No-till adoption was made possible by:
 – Development of Herbicides
 – Demonstration sites
 – Introduction of fluted coulter planters
• However, adoption was limited to a small portion of cropland until the 1990s
• 30 years for a significant change in cultural practices!!!
An OSU Extension Survey found that No-till practices were implemented on 28% of Oklahoma Cropland in 2008
No-Till in South America

• South America has experienced the most impressive rate of no-till adoption
• Increased from 0.7 to 40.6 Mha between 1987 to 2004
• Paraguay has the largest percentage of No-till cropland in the world,
 – Nearly 70% of the cropland is in no-till
No-Till in Europe

- Efforts to establish no-till were initiated in the 1950s.
- Adoption was limited because of problems with weed control.
- Similar story to the U.S.
 - The first experience producers had were negative.
 - This appears to have delayed adoption even after technologies were improved.
No-till in Africa

• In general, adoption is very limited
• In Africa, adoption is limited by
 – Cost of mechanized no-till equipment
 – Land tenure
 – Harsh climate conditions
 – Lack of knowledge
 – Lack of crop residues (cultural practices associated with animal production and fuel)
No-Till in Asia

• Generally represents a small faction of total cropland management

• India provides for some optimism:
 – No till wheat acres increased from 400 ha in 1998 to 2.2 Mha in 2005.
No-till in Australia

• No-till is expanding rapidly
• In Western Australia 85% of cropland is no-till
• Nationally only 40% of cropland is under no-till
My thoughts on Why No-Till Adoption has been Slow

• Reinvestment costs for older producers
 – 65 year old farmers are generally not interested in borrowing money and changing their business model

• Knowledge gaps must be filled
 – This takes time and effort

• Early efforts had limited success
 – We have better equipment and technologies

• Perception that no-till can not be grazed
 – It can be successfully grazed but changes are required