Defining Soil Quality

Jason Warren Oklahoma State University

Simplest Definition

- The capacity of soil to function (Karlen, 1997).
- What is the function of soil??

Obvious Functions of Soil

- Crop production
 - Grain, biomass, habitat, trees
- Building material
 - Home construction, Waste water Treatment, etc.

Additional Functions

- Maintain or enhance air and water Quality
 - Erosion by wind and water are indicators of poor function
 - Erosion itself reduces Productivity.
 - Release of excess solutes to surface and ground waters is an indicator of poor function.

Additional Functions

- Water Flow Regulation
 - Excessive Runoff
 - Flooding
 - Erosion
 - H₂O available for crop production
- Cycle and Store of Nutrients
 - Maintenance of inherent Fertility
 - Gaseous losses
 - Solute losses

Soil Properties that Impact Quality

- Two categories of soil properties:
 - Inherent
 - Dynamic

Inherent Properties.

- Result from soil forming factors
- Do not change on human time scale
 - Texture
 - Depth
 - Clay type
 - Landscape position

Inherent Soil Properties

- Set limitations to soils functionality:
- Therefore these properties are used to classify soils into <u>Capability Classes</u>.
 - The first soil quality assessment based on: <u>Capability</u> to produce crops without deteriorating soil productivity:
 - I-IV, suitable for cultivation
 - Increasing levels of management
 - Decreasing production potential
 - V-VII, not suitable for cultivation

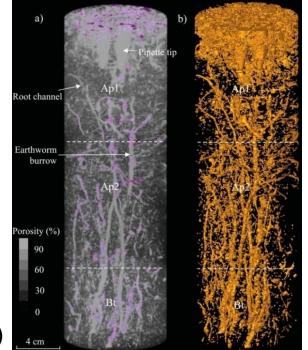
Dynamic Properties

Management Dependent

Cultivated vs. Non-cultivated

Can change during human time scale

Short-term and Long-term


 Characteristics most often discussed in the context of soil quality

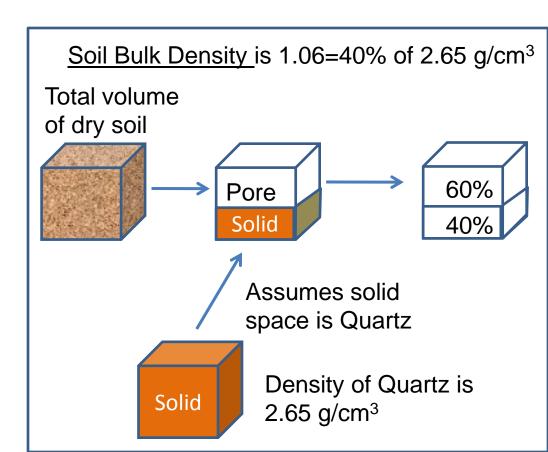
Dynamic Soil Properties

- Structure
- Compaction/ bulk density
- Surface Crusts
- Aggregate Stability
- Permeability
- Water Holding Capacity
- Organic Matter
- Biological Activity
- Fertility

Structure

- Provides for macroporosity in soils
- Influenced by texture, clay type, biological activity, and organic matter content.
- The shrink and swell capacity of clays can create macropores.
- Biological activity create biopores
- Macropores provide rapid air and water movement, and promote root growth

Luo et al. (2007)


Structure

- Is generally stable in subsoil, but can be influenced by management in surface soil
 - Cultivation destroys surface structure and provides short-term artificial porosity.
 - Cultivation and traffic causes compaction which increases bulk density and reduces permeability of soils

Bulk Density

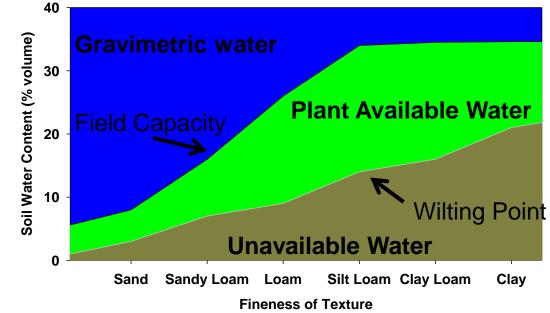
• Dependent on soil texture, organic matter content, soil structure,

Bulk Density

- Excessively high bulk densities restrict root growth; and air, and water movement.
- Compaction increases bulk density
- Tillage artificially and temporarily decreases bulk density of soil surface.
- Organic matter reduces bulk density because of low particle density and its impact of aggregate stability.

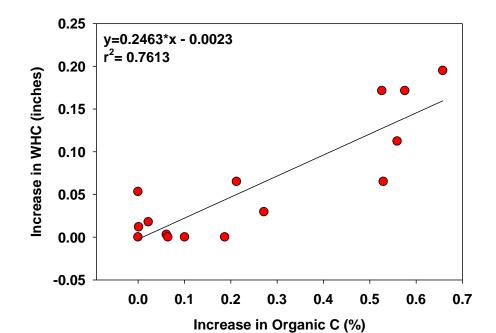
Soil Crusting

- Reduces water infiltration
- Reduces crop emergence
- A soils susceptibility to crusting is influences by texture, sodium content, organic matter, and crop residue



Aggregate Stability

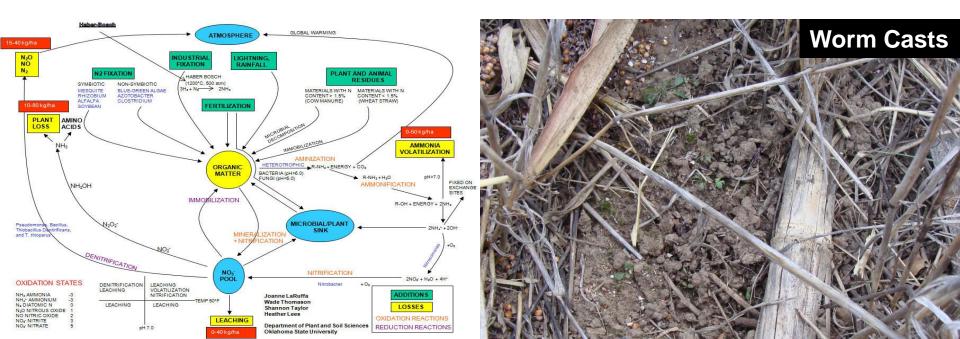
- Ability of soil aggregates to resist disintegration
- Important indicator of a soils ability to resist erosion, surface crusting and compaction.
- Influenced by clay type, adsorbed cations, organic matter, and microbial activity.
- Reduced tillage and the promotion of organic matter accumulation increase aggregate stability.


Water Holding Capacity

- Amount of water held in the soil between permanent wilting point and field capacity.
- Dependent on texture, depth, organic matter and bulk density

Organic Matters impact on Water Holding Capacity

 Increasing organic C content by 1% in top 6 inches of soil increased water holding capacity by 0.25 inches

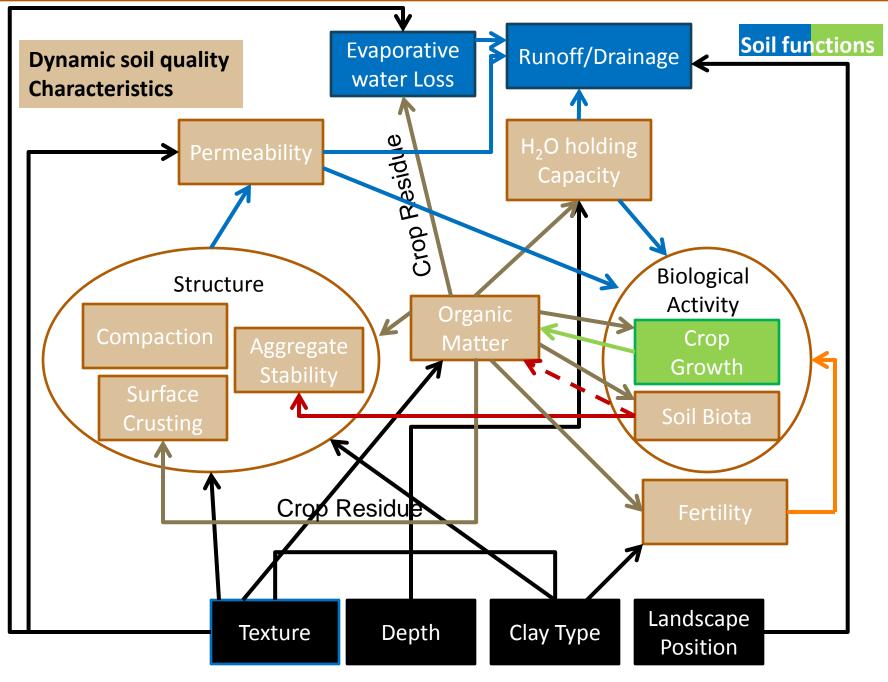

McVay, 2006

Permeability

- Ease with which gases, liquids and roots penetrate the soil.
- Dependent on soil texture and soil structure
- Tillage can temporarily increase macroporosity, therefore permeability.
 - However, it also removes residue and organic matter, therefore surface crusting can limit infiltration.

Biological Activity

- Dependent on soil organic matter content, texture, and moisture regime
- Influences aggregate stability, soils structure, and nutrient cycling



Soil Organic Matter

- Comprised of living biomass, dead yet recognizable residue, and amorphous organic compounds.
- Influences:
 - Nutrient cycling,
 - Biological activity
 - Aggregate stability
 - Bulk density.
 - Global carbon cycle.
 - Water holding Capacity

Interaction Among Soil Quality Indicators

- Physical, chemical, and biological indicators are interdependent and interact to determine the quality of a soil
- They do not respond independently to management
- This makes it very challenging to assess soil quality.

Inherent Characteristics