Soil Properties influencing Erodibility

 Soil Properties that influence detachment and runoff

- > Texture
- > Structure
- > Aggregation
- > Density/compaction
- > Wettability
- > Antecedent soil moisture
- > Organic Matter

Texture

Sandy soils

- Sands are easily detacted
- > However, sand particle require the most energy for transport
- Sandy soils also have low runoff

Texture (Cont.)

Clayey soils

- Well aggregated clays require tremendous energy for detachment
- Clays produce high runoff
- Once detached they can be transported long distances

Texture (Cont.)

Silty soils

- > Easily detached and transported
- Very silty soils can have poor structure and low permeability causing rapid runoff, adding to the problem.
- Sitly soils are the most erodible!

Soil Structure

- Soil Structure describes the arrangement of sand, silt, and clay particles
- Structure influence the macroporosity of a soil.
- Macropores are larger than 75 μm and allow for differential flow of water

Soil Structure

Crusting (Surface Sealing)

- Results from raindrop impact and dispersion of surface
- Clay particles move down and plug macropores or off in runoff
- Layers of sand and silt are left at the surface
- In clayey soils the crust will contain sufficient clay to crack or peal upon drying

Crusting (Surface Sealing)

Dramatically decrease infiltration

 A soils susceptibility to crusting is influences by texture, sodium content, organic matter, and crop residue

 Prevention of crusts is the first soil quality improvement resulting from no-till

Aggregate Stability

- Ability of aggregate to resist applied force.
- Stable aggregates resist dispersion and crusting
- A function of
 - > Texture (clays are most stable)
 - organic matter content (increasing OM increases stability)
 - > CEC (high CEC = high stability)
 - > cementing agents increase stability
 - > Tillage decreases stability
 - Sodium decreases stability

Density/Compaction

Compaction results in a decrease in the size and/or number of macropores
All else being equal, high density or compacted soils are more prone to erosion due to increased runoff

Wettability

- The ability of a soil to absorb water
- Coatings of organic matter can cause soils to repeal water
- Moderate water repellency is beneficial because it reduces slaking and increases aggregate stability
- High repellency increases runoff, resulting in increased erosion

Slaking

 The breakdown of large, air-dry soil aggregates (>2mm) into smaller microaggregates (<0.25mm) when they are suddenly immersed in water.

- Internal stresses caused by rapid water intake cause aggregates to explode
 - Differential swelling of clay, rapid release of heat, escaping air, mechanical action of moving water

Antecedent Moisture

- Runoff will be initiated faster on wet soils
- Less kinetic energy is required to detach particles from a saturate soil compared to a soil at field capacity
- Output: A series of the ser
- Can influence runoff from small rainfall events
- Usually not significant during intense events

Soil Organic Matter

 Plant and animal tissues in various stages of decomposition

- Important in the development and persistence of stable aggregates
- Provides three forms of binding agents
 - > Temporary
 - > Transient
 - > Persistent

Temporary agents

- Consist of plant roots, mucilages, mycorrhizal hyphae, bacterial cells and algae
 - Enmesh mineral particles
 - > Important in the prevention of compaction

Transient Agents

 Consist of polysaccharides and organic mucilages exuded from plants and through microbial processes

Important for microaggregation

 Must be continuously supplied through decomposition or organic residues.

Persistent Agents

 Highly decomposed humic compounds
 Found inside microaggregates forming clay-humic complexes

Important for microaggregation

Surface residues

 Addition and/or maintenance of surface residues protects the soil surface from the bombardment of rainfall

 Also, concentrates organic matter near the surface to provide benefits to the surface

Modeling Water Erosion

- Important to understand the process of erosion
- Allows for the identification of appropriate management to reduce erosion
- Provides estimates of on and off-site impacts
- Allows for assessment of erosion control efforts

Water Erosion Models

• Empirical models

- > Universal Soil Loss Equations (USLE)
- > Revised USLE (RUSLE)
- Modified USLE (MUSLE)
- Processed based models
 - > Water Erosion Prediction Project (WEPP)
 - > Ephemeral Gully Erosion Model (EGEM)

Universal Soil Loss Equation

- Predicts the long term average annual rate of erosion on a field slope based on rainfall pattern, soil type, topography, crop system and management practices
- Predicts Sheet and Rill erosion on a single slope
- Developed for cropland but can be useful for construction sites
- Used to compare soil loss to "tolerable soil loss" rates (T value)

Universal Soil Loss EquationCan not be used to:

- Estimate nutrient and soil loss on watershed or field-scale basis (does not provide edge of field loss)
- > Estimate soil loss on an event or daily basis
- Estimate interrill, rill, gully, or streambank erosion
- Is very useful to understand the process affecting erosion
- Useful for comparing consequences of management options

Universal Soil Loss Equation

• $A=R \times K \times LS \times C \times P$

- > A=average soil loss (Tons acre-1)
- R=Rainfall and runoff factor (100s of ft-tons/acreyr)
- K=soil edibility factor, Soil loss per unit of rainfall erosivity from bare fallow on a 9% slope 72.6ft long (Tons of soil/100 ft-tons of rainfall)
- LS=Slope length and steepness factor (dimensionless)
- C=Cover-management factor (dimensionless)
- > P= Supporting practice factor (dimensionless)

R Factor (Rainfall and Runoff Erosivity)

- Dependent on the energy and intensity of rainstorms
- 4000 location-years of rainfall records were analyzed to provide iso-erodent map of U.S.

K Factor (Soil Erodibility)

Inherent erodibility of soil Rate of soil loss on a standard plot > 9% slope, 72.6 ft long, kept fallow with periodic tillage up and down slope Many were obtained from small plots using a rainfall simulator Extrapolated to all soil mapping units based on soil survey data

LS Factor (Slope Length and Steepness)

 Ratio of soil loss expected per unit area from a particular slope condition compared to what would occur on a 9% slope 72.6 ft long. C Factor (Cover Management)

 Corrects soil loss for differences in residue cover and crop type

- Incorporates difference in the growth pattern and canopy geometry of different crops
- Developed from thousands of plot-years of runoff and soil loss data.

P Factor (Supporting Practices)

Incorporates influence of special practices such as:

- Contour cultivation
- Contour strip cropping
- Terraces are not included in USLE. They only influence the length of slope