Cover Crops (Section 6.3)

- Conceptually they are meant to provide cover to prevent erosion during fallow periods between cash crops.
- They can provide a variety of benefits to the crop rotation.
- The intended benefit is very important when selecting a cover crop
- A good <u>reference</u> for cover crop management

Benefits of cover crops

Erosion control

- Improve soil structure
 - Increase soil organic matter and surface residue
 - Increase macroporosity
 - Alleviate/prevent compaction
- Enhance soil fertility
 - N Fixation
 - Recycle nutrients
 - Prevent leaching of nutrients
- Weed Suppression
- Disease and insect suppression
- Improve water quality
- Increase crop yields!

Cover Crops: Soil Structure, Organic Matter, and surface residues

- SOM and surface residues are continuously being decomposed
- Cover crops can utilize water and sunlight that is otherwise lost during the fallow period to make biomass to replenish SOM and residue losses.
- Can be important in rotation with low residue crops

Soil Structure

 Tap rooted cover crops may penetrated dense subsoils and improve rooting depth or cash crop

Forage Radish in Ottawa Co.

Sun hemp in Kingfisher County

Soil Structure

 Fibrous root cover crops can alleviate and/or prevent surface compaction Sorghum Sudan roots in grazed wheat field in Kingfisher Co

Organic Matter, and Surface Residues

- Good examples of a cover crop used for this purpose
 - Inclusion of a cereal grain in cotton production
 - Follow soybeans with a winter cereal to provide surface residues for next corn or soybean crop.
 - Very common in organic cropping systems

Soybeans after Cover Crop Rye

- Can decrease in-season water loss
- Improve soil structure and drainage
- Yields can be improved
- Pods are set higher, improving harvest

Rye prior to Corn

- Virginia <u>Factsheet</u>
- <u>http://www.ag.auburn.edu/auxiliary/nsdl/scas</u>
 <u>c/Proceedings/2009/Thomason.pdf</u>

Cover Crops and Nutrient Management

- N Fixation
 - Legumes
 - Sometimes difficult to determine mineralization and availability to cash crop
 - Rule of thumb is that 40-60% of aboveground N can go into following crop if incorporated
 - 25% may be available if left on the surface
 - Sensor based technology can provide a better assessment of crop N status and remove the guess work

Nitrogen Fixation

- Potential total N produced by common legume cover crops
 - Cowpea=100-150 lbs N
 - Hairy Vetch=90-200 lbs
 - Berseen clover=75-220 lbs N
- This will depend on biomass production and N concentration
- Most legumes have 3.5-4% N prior to flowering and 3-3.5% during flowering.
- This concentration declines rapidly after flowering

Cover Crops and Nutrient Management

- Recycle nutrients
 - Concept that cover crops extract immobile nutrients from low testing soils and make them more available upon mineralization
 - Difficult to quantify but may serve as a cumulative benefit of cover crops

Cover Crops and Nutrient Management

- Prevent leaching of nutrients using Catch crops
 - Rye is commonly used to capture N mineralized after soybeans in corn-soybean rotations.
 - <u>Maryland cover crop program</u>
 - Nitrogen capture is meant to prevent NO₃ leaching and transport to Chesapeake Bay
 - Currently <u>research</u> is underway to develop management to optimize N utilization by corn following rye.
 - Can be challenging because of immobilization during decomposition of rye

Cover Crops and Weed Suppression

- Cover crops compete with weeds and suppress growth
- Some may also exude allelopathic compounds
- Cover crops should be easily killed by herbicides
- They should also be killed before viable seeds are produced in most cases.

Allelopathy

- Cover crops that have been found to exhibit allelopathic benefits
 - Brassicas such as canola, rapeseed, or radish
 - Cereal Rye
 - Sorghum Sudan
- Residue affects of the properties vary and should be considered when choosing a cover crop
- Generally they are short lived.

Disease and Insect suppression

- Some cover crops such as Brassicas (canola, rapeseed, radishes) as examples can exude biotoxic compounds
- They can be mowed and incorporated to maximize their fumigant potential because fumigant is release when cells are ruptured
- However, this affect is low compared to commercial fumigants

Cover Crops and Water Quality

- Catch crops prevent excess N from moving to water bodies
- Erosion prevention
 - Sediment, herbicide and nutrients
- Reductions in pesticide use
 - Benefits resulting from bio-fumigation can be observe red and realized but are generally not well understood.

Cover Crops and Cash Crop Yield

- Examples of yield improvements can be found
- Rye in continuous soybean production
- Rye in Cotton
- Rye prior to corn
- Legumes in rotation with corn or cereal grains
- Where severe compaction is prevented or alleviated.

Cover Crops and Cash Crop Yield

- Generally benefits of cover crops are cumulative
- May simply decrease production costs
- They can be used to fix problems with the rotation that are not be addressed with cash crops
 - Inclusion of rye in corn-bean rotation is a good example.
 - Why not just grow wheat for grain
 - Answer, wheat is not as valuable.
 - Lack of diversity is addressed with cover crop.