### **Other Design and Management Issues**

- Clogging
  - Physical (mineral particles)
  - Chemical (precipitation)
  - Biological (slimes, algae, etc.)
- Filtration
  - Settling basins
  - Sand separators (centrifugal or cyclone separators)
  - Media (sand) filters
  - Screen filters

# There are many different types of filtration systems.





The type is dictated by the water source and also by emitter size.

### **Filtration Requirements for Drip Emitters**



### Plugging Potential of Irrigation Water for Microirrigation

Table 14.1. Plugging Potential of Irrigation Water for Microirrigation (Bucks et al., 1979).

| Potential<br>Problem    | Unit of<br>Measure | Minor   | Moderate          | Severe  |
|-------------------------|--------------------|---------|-------------------|---------|
| Physical                |                    |         |                   |         |
| Suspended Solids        | ppm                | < 50    | 50 - 100          | > 100   |
| Chemical                |                    |         |                   |         |
| pН                      | <b></b>            | < 7     | 7 - 8             | > 8     |
| Salts                   | ppm                | < 500   | 500 - 2000        | > 2000  |
| Manganese               | ppm                | < 0.1   | 0.1 - 1.5         | > 1.5   |
| Iron                    | ppm                | < 0.1   | 0.1 - 1.5         | > 1.5   |
| Hydrogen Sulfrde        | ppm                | < 0.5   | 0.5 - 2.0         | > 2.0   |
| Biological              |                    |         |                   |         |
| Bacteria<br>Populations | Number/ml          | <10,000 | 10,000-<br>50,000 | >50,000 |

#### Chemical treatment

- Acid: prevent calcium precipitation
- Chlorine
  - control biological activity: algae and bacterial slime
  - deliberately precipitate iron
- Flushing
  - after installation or repairs, and as part of routine maintenance
  - valves or other openings at the end of all pipes, including laterals
- Application uniformity
  - manufacturing variation
  - pressure variations in the mainlines and laterals
  - pressure-discharge relationships of the applicators



llaivareity

#### Netafim Typhoon<sup>®</sup> Drip Irrigation Tubing (Clear Demo Tubing)

16-mm diameter, seamless, 13-mil thick extruded PE tubing

**Emitter outlet** 

Turbulent flow PVC emitter welded inside tubing

### Netafim Typhoon® Drip Irrigation Tubing





### Wetting Pattern of a Subsurface Drip Lateral

hoto Courtesy of Kansas State University

24



### Surface wetting from drip





### Flush Risers on Distal End of Research Plots

Air Vent to Release Trapped Air from Laterals

Ball Valve for Manual Flushing of Drip Laterals

### **Irrigation Water Requirement**

### **Evapotranspiration**

- Terminology
  - Evaporation
    - Process of water movement, in the vapor form, into the atmosphere from soil, water, or plant surfaces
  - Transpiration
    - Evaporation of water from plant stomata into the atmosphere
  - Evapotranspiration
    - Sum of evaporation and transpiration (abbreviated "ET")
  - Consumptive use
    - Sum of ET and the water taken up the plant and retained in the plant tissue (magnitude approximately equal to ET, and often used interchangeably)

### Magnitude of ET

- Generally tenths of an inch per day, or tens of inches per growing season
- Varies with type of plant, growth stage, weather, soil water content, etc.
- Transpiration ratio
  - Ratio of the mass of water transpired to the mass of plant dry matter produced (g H<sub>2</sub>O/g dry matter)
- Typical values: 250 for sorghum 500 for wheat 900 for alfalfa

#### **Plant Water Use Patterns**

#### Daily Water Use: peaks late in afternoon; very little water use at night



### **Plant Water Use Patterns**

• Seasonal Use Pattern: Peak period affects design



#### **Evaporation Rate and Time Since Irrigation** Energy or Water Availability as the Limiting Factor in ET Rate



**EVAPORATION RATE, inch/day** 

#### **Evapotranspiration Modeling**

#### Estimation based on:

- climate
- crop
- soil factors

#### ETc = Kc ETo

- ETc = actual crop evapotranspiration rate
- ETo = the evapotranspiration rate for a reference crop
- Kc = the crop coefficient

#### **Evapotranspiration Modeling**

- Reference Crop ET (ETo)
  - ET rate of actively growing, well-watered, "reference" crop
  - Grass or alfalfa used as the reference crop (alfalfa is higher)
  - A measure of the amount of energy available for ET
  - Many weather-based methods available for estimating ETo
    - (FAO Blaney-Criddle; Jensen-Haise; Modified Penman; Penman-Montieth)
- Crop Coefficient (Kc)
  - Empirical coefficient which incorporates type of crop & stage of growth (Kcb); and soil water status-- a dry soil (Ka) can limit ET; a wet soil surface (Ks) can increase soil evaporation
  - Kc = (Kcb x Ka) + Ks
  - Kc values generally less than 1.0, but not always

### **Efficiencies and Uniformities**

- Application efficiency (E<sub>a</sub>)
  - $E_a = \frac{d_n}{d_g}$
  - $-d_n = net irrigation depth$
  - d<sub>g</sub> = gross irrigation depth
    fraction or percentage
- Water losses
  - Evaporation
  - Drift
  - Runoff
  - Deep percolation

### Water Losses



### Adequacy

- Because of nonuniformity, there is a tradeoff between excessive deep percolation and plant water stress
- Adequacy: the percent of the irrigated area that receives the desired depth of water or more
- Figure 5.3
  - Plotting the percentage of area in the field that receives a given depth of irrigation water or more gives a distribution uniformity curve
  - Irrigating for a longer or shorter time moves the curve up or down
  - System modifications may be required to change the shape of the curve

Figure 5.3a



Fig 5.3b



#### Figure 5.3c



#### Figure 5.3d



### **Irrigation Scheduling**

# **General Approaches**

- Maintain soil moisture within desired limits
  - direct measurement
  - moisture accounting
- Use plant status indicators to trigger irrigation
  - wilting, leaf rolling, leaf color
  - canopy-air temperature difference
- Irrigate according to calendar or fixed schedule
  - Irrigation district delivery schedule
  - Watching the neighbors

### Yield/Appearance vs. ET<sub>c</sub>



ETc

### **Deficit Irrigation**



### Growth/Yield vs. ir (Figure 6.2)



### Possible Irrigation Scheduling Management Objectives

- Maximum yield/biomass production
- Maximum economic return
- Functional value of plants (e.g., athletic fields)
- Aesthetic value of plants (e.g., landscapes)
- Keeping plants alive

### **Plant Root Zones**

- Depth used for scheduling vs. maximum depth where roots are found
- Influenced by soil characteristics
  - Soil texture
  - Hardpan
  - Bedrock
- Perennial vs. annual plants

|                   | Maximum<br>Effective |                    | Maximum<br>Effective |
|-------------------|----------------------|--------------------|----------------------|
| Crop              | Depth, ft            | Crop               | Depth, ft            |
| Alfalfa           | 3.0 - 10             | Onions             | 2.6 - 6.6            |
| Banana            | 1.3 - 2.6            | Other small grains | 3.3 - 5.0            |
| Barley            | 3.3 - 4.3            | Palm trees         | 2.3 - 3.6            |
| Beans             | 1.3 - 2.6            | Peas               | 2.0 - 3.3            |
| Cabbage           | 2.0 - 3.3            | Peppers            | 1.7 - 3.3            |
| Carrots           | 1.6 - 3.3            | Pineapple          | 1.0 - 2.0            |
| Celery            | 1.0 - 1.7            | Potatoes           | 1.3 - 2.6            |
| Citrus            | 3.3 - 5.9            | Safflower          | 3.3 - 6.6            |
| Clover            | 2.0 - 3.0            | Sisal              | 1.7 - 3.3            |
| Cotton            | 3.3 - 6.6            | Sorghum            | 3.3 - 6.6            |
| Cucumber          | 2.3 - 4.0            | Soybeans           | 2.6 - 5.0            |
| Dates             | 5.0 - 8.3            | Spinach            | 1.0 - 1.7            |
| December orchards | 3.3 - 9.9            | Strawberries       | 0.7 - 1.0            |
| Flax              | 3.3 - 5.0            | Sugarbeet .        | 2.6 - 6.6            |
| Grapes            | 3.3 - 6.6            | Sugarcane          | 4.0 - 6.6            |
| Grass             | 1.7 - 5.0            | Sunflower          | 3.3 - 8.3            |
| Groundnuts        | 1.7 - 3.3            | Sweetpotatoes      | 3.3 - 5.0            |
| Lettuce           | 1.0 - 1.7            | Tobacco            | 1.7 - 3.3            |
| Maize             | 3.3 - 6.6            | Tomatoes           | 2.3 - 5.0            |
| Melons            | 3.3 - 5.0            | Vegetables         | 1.0 - 2.0            |
| Olives            | 2.6 - 6.6            | Wheat              | 3.3 - 6.6            |

| Table 6.2. | Range of maximum | effective rooting d | lepths for fully | grown plants. |
|------------|------------------|---------------------|------------------|---------------|
|------------|------------------|---------------------|------------------|---------------|

Modified from Doorenbos and Pruitt (1977).

# Turf & Shrub Rooting Depths

Table 6.3. Effective root depths for turfgrass and shrubs.

| Turfgrass | 0.5 - 2.0 foot |  |
|-----------|----------------|--|
| Shrubs    | 2.0 foot       |  |

### **Turfgrass Root Depth**

#### **Potential Rooting Depth for Turfgrass Species**

(Dr. L. Wu, U. C. Davis, 1985)

| Shallow               | Medium                | Deep           |
|-----------------------|-----------------------|----------------|
| (1-8 inches)          | (8-18 inches          | (18-60 inches) |
| Poa annua             | Kentucky<br>bluegrass | Zoysiagrass    |
| Creeping<br>bentgrass | Red fescue            | Bermudagrass   |
| Colonial<br>bentgrass | Ryegrass              | Tall fescue    |
|                       | St. Augustinegrass    |                |

### Root Development of Annual Plants Days after planting

0 20 40 60 120 0 Rooting depth (ft) 2. 3. Maximum rooting depth Assumes linear increase in rooting depth from germination to maximum depth

Figure 6.3. Development of a corn plant's root zone.

#### Example 6.2

Determine the root zone depth for corn at early tassel assuming that depth at germination is 6 inches, maximum rooting depth is 4 feet, full depth occurs 90 days after germination, and early tassel occurs 50 days after germination.

Given:

 $D_{ag} = 50 \text{ days,}$   $D_{tm} = 90 \text{ days,}$   $R_{dmin} = 0.5 \text{ feet, and}$  $R_{dmax} = 4.0 \text{ feet.}$ 

Find:

R<sub>d</sub> at early tassel.

Use Equations 6.6 and 6.7

$$R_f = \frac{50 \ days}{90 \ days} = 0.56$$

 $R_d = 0.5 \text{ ft} + (4.0 \text{ ft} - 0.5 \text{ ft}) 0.56 = 2.5 \text{ feet}$ 

### 4-3-2-1 Rule-of-Thumb

- Divide the crop root depth into quarters
- Upper ¼ provides 40% of water uptake
- 2<sup>nd</sup> ¼ provides 30% of water uptake
- 3<sup>rd</sup> ¼ provides 20% of water uptake
- Lowest ¼ provides only 10% of water uptake
- Applies only when most of root zone irrigated to field capacity
- Dictated by distribution of root mass

### Maximum vs. Effective Rooting Depth



Figure 6.4. Average moisture extraction from the plant root zone, the 4-3-2-1 rule.

# **Irrigation Timing**

Maximum irrigation interval, (days)

$$T_{\max} = \frac{AD}{ET_c}$$

AD=Allowed Deficient

Actual irrigation interval, (days)

$$T = \frac{d_e}{ET_c}$$

d<sub>e</sub> = effective depth of irrigation, (in. or mm)

### Latest Date

 $LD = \frac{AD - SWD}{ET_c(forecast)}$ 

- LD = maximum number of days before irrigation should occur
- AD=Allowable Deficient
- SWD=Soil Water Deficient
- ET<sub>c</sub>(forecast) can be based on long-term averages or last few days



Figure 6.5. Illustration of LD concept.

### **Earliest Date**

$$ED = \frac{r_a + d_{ep} - SWD}{ET_c(forecast)}$$

- ED = minimum number of days before irrigation should occur
- d<sub>ep</sub> = planned effective depth of water
- r<sub>a</sub> = rainfall allowance (allow room in the profile beyond d<sub>ep</sub>)

#### Earliest Date



Figure 6.7. Illustration of ED concept.

#### Components of Crop Root Zone Water Balance



# Soil Water Budget Calculations SWD<sub>i</sub> = SWD<sub>i-1</sub> + ET<sub>c i-1</sub> - $d_{e i-1}$ - $P_{e i-1}$ - $U_{f i-1}$

#### Subscripts: i = today i-1 = yesterday

(all quantities below in consistent depth units: inches, mm, etc.)

- SWD= soil water deficit
- $ET_c = crop evapotranspiration$
- d<sub>e</sub> = effective irrigation
- $P_e = effective precipitation$
- $U_f$  = upward flow of water from a shallow water table



Figure 6.8. Illustration of key irrigation scheduling terms and their changes with time for annual crops.

### **Other Irrigation Scheduling Methods**

- Soil Water Measurement
  - Determine SWD by measuring:
    - feel and appearance of soil
    - $\theta_m$  (gravimetric sampling)
    - $\theta_v$  (neutron scattering)
    - $\psi_p$  (potential: w/ tensiometers or resistance blocks (must convert  $\psi_p$  to water content)
  - Need measurements at several locations
  - Need measurements throughout root zone depth
  - Difficult to predict Latest Date
  - Doesn't indicate how much water to apply

# **Other Irrigation Scheduling Methods**

#### Plant Status Indicators

- Leaf water potential (energy status of leaf water)
  - Use pressure chamber or thermocouple psychrometer
  - Measured at mid-day; many samples needed
- Foliage/Air temperature difference
  - Well-watered plants cooler than air
  - Use infrared thermometer
- Leaf appearance
  - Color, wilting, etc.
  - Indicators show up too late
- Irrigate at critical growth stages (e.g.: flowering)

### **Mesonet Irrigation Scheduler**

 <u>http://agweather.mesonet.org/index.php/dat</u> <u>a/section/crop</u>

### **Soil Water Measurement**

- Gravimetric
  - Measures mass water content ( $\theta_m$ )
  - Take field samples  $\rightarrow$  weigh  $\rightarrow$  oven dry  $\rightarrow$  weigh
  - Advantages: accurate; Multiple locations
  - Disadvantages: labor; Time delay
- Feel and appearance
  - Take field samples and feel them by hand
  - Advantages: low cost; Multiple locations
  - Disadvantages: experience required; Not highly accurate

### **Soil Water Measurement**

- Neutron scattering (attenuation)
  - Measures volumetric water content ( $\theta_v$ )
  - Attenuation of high-energy neutrons by hydrogen nucleus
  - Advantages:
    - samples a relatively large soil sphere
    - repeatedly sample same site and several depths
    - accurate
  - Disadvantages:
    - high cost instrument
    - radioactive licensing and safety
    - not reliable for shallow measurements near the soil surface
- Dielectric constant
  - A soil's dielectric constant is dependent on soil moisture
  - Time domain reflectometry (TDR)
  - Frequency domain reflectometry (FDR)
  - Primarily used for research purposes at this time

#### Soil Water Measurement Neutron Attenuation



### **Soil Water Measurement**

- Tensiometers
  - Measure soil water potential (tension)
  - Practical operating range is about 0 to 0.75 bar of tension (this can be a limitation on medium- and fine-textured soils)
- Electrical resistance blocks
  - Measure soil water potential (tension)
  - Tend to work better at higher tensions (lower water contents)
- Thermal dissipation blocks
  - Measure soil water potential (tension)
  - Require individual calibration

#### Tensiometer for Measuring Soil Water Potential

Water Reservoir



#### Vacuum Gauge (0-100 centibar)

#### **Electrical Resistance Blocks & Meters**

