Soil Compaction Jason Warren Oklahoma State University Dept. Plant and Soil Sciences

What is Soil Compaction

- Soil particles are re-arranged and compressed
 - Reducing pore space and increasing bulk density.
- Compaction occurs when applied force is greater than the soils load bearing strength

Adverse Effects of Compaction

- Poor aeration
- Poor water infiltration and drainage
- Poor root growth
- Reduced nutrient uptake and water availability
- O Difficult to plant into compacted soils!
- Emergence limitations
 - > Surface crusts

Normal Soil

Compacted soils

 Compaction reduces number and volume of macropores

Reduced aeration, drainage and root growth

Compacted Soil

 Compacted soils can have more significant aeration problems when wet.

Hard vs. Compacted Soils

• Are hard soils always compacted?

- > No!
- > Dry soils are hard!
- Clayey soils can be hard but not necessarily compacted.
 - Clays can have production limitations similar to compacted soils
- Hard= resists penetration or forms clods that are difficult to break apart.

Hard vs. Compacted Soils

Compacted soils will <u>always</u> resist penetration > Even when moist. These distinctions are important when trying to diagnose and alleviate compaction.

Evaluating Soil Compaction

• Using a Penetrometer. Sensitive to soil moisture > Dry soils will have high resistance to penetration > Used when soils are at field capacity > Root growth is restricted at <u>300psi</u>

Evaluating Soil Compaction

Best tools are a shovel and your eyes

- Look for horizontal soil structure and root growth
- Evaluate root growth of tap rooted plants.
 Fibrous roots can also show compaction.

Influence of Soil Texture on Compaction

- Moderately course soils such as Sandy loams are most susceptible to compaction.
 - Large pores between sand grains fill with smaller silt and clay.
- As the clay content increases, potential for compaction decreases.
 - Less air filled pore space under moist conditions (must move water out to compress soil)
 - Clays are more cohesive, (more difficult to move around).

Soil Moisture and Compaction

 At field capacity, water lubricates soil particles.

Pressure is distributed deeper into profile.

Soil Moisture and Compaction

- Traffic on wet soils causes ruts <u>and</u> significant subsurface compaction
- Of course, compaction occurs without ruts too!

Tire width and inflation

Wide tires reduce surface compaction
Less effective at reducing subsurface compaction

Compaction in No-till vs Conventional tillage

- Surface tillage provides <u>short term</u> reduction of compaction at surface:
 - > Provides ideal seed bed
 - > BUT can create a plow pan
- Heavy traffic and grazing can compact soils in both systems

 No-till can alleviate plow pan but surface compaction can still be a problem.

Effect of No-till on Plow Pans

- Removes pressure applied by tillage implement
 - Concentrated and uniform pressure at depth causes plow pan.
- Allows soil processes to beak plow pan apart
 - > Freeze and thaw cycles??
 - > Shrink and swell during drying and wetting
 - > Root penetration

No-till effect on Subsurface Compaction

Effect of No-till on Surface Crusts

- Force of raindrop hitting the soil surface forms surface crusts.
- Crop residues protect soil surface from raindrops
 - > Can improve emergence.

Alleviating Compaction in No-till

Sub-Soiling

Generally a short-term solution with inconsistent yield response

Sub-soiling

Soils should be dry when sub-soiled
Dry soils will shatter
Sub-soiling a wet soil will simply create a narrow channel.

Alleviating Compaction in No-till

Control Traffic

How do we do it?
Limit Grazing
GPS guidance
Tramlines

Limit Grazing

Minimize grazing during wet periods Spring graze out.

Maintain surface residue

 > OM accumulation will limit shallow compaction

GPS Guidance and Tramlines

- Limits compaction to confined areas of field.
- Return accuracy of GPS will determine size of compacted area

GPS Guidance and Tramlines

• Tramlines:

- Created during planting by plugging rows
- > Provides accurate return to traffic pattern

Final Thoughts

- Some level of soil compaction is inevitable in modern crop production.
- If soils are very susceptible to compaction, prevention is the key
 - Control equipment traffic and grazing, and maintain surface residue.
- Deep tillage may be warranted for severe compaction
 - Cause of compaction must be removed

