#### Soil Carbon Sequestration and Carbon Credits Jason Warren Oklahoma State University



### What is Soil Carbon Sequestration

- Transfer of atmospheric CO<sub>2</sub> to the soil through land management practices.
   Goal:
  - > Offset CO<sub>2</sub> emissions to atmosphere from fossil fuel combustion.
  - > This offset can be sold as a carbon credit.



What's the Potential for Soil Sequestration of  $CO_2$ 

- The USDA estimates that U.S. Farms and Rangeland could sequester 12-14% of current U.S. CO<sub>2</sub> emission
- Much of this CO<sub>2</sub> will be sequestered through the reversal of soil carbon losses from:
  - > Cultivation
  - > Overgrazing

#### Soil Organic Carbon in Oklahoma

- Presettlement there were approximately 2.3 billion tons of carbon in Oklahoma Soils
- We have lost ~<u>114 million tons of Carbon</u> through cultivation:
  - > (38% of C in top 6 in)

Why do we lose Carbon after cultivation.

- Cultivation aerates the soil and breaks up soil aggregates.
   Aeration increases microbial
  - respiration
    - Organic Carbon is utilized for energy

#### Impact of Tillage on Soil Carbon cycle

### **Atmosphere** CO. Living biomas Carbohydrat **Soil Environment** Soil Respiration (Decomposition) Carbon storage Soil Organic Carbon

Soil respiration is equal is greater than plant residue deposition. Net loss of Carbon

#### <u>Magruder Plots, Stillwater:</u> Soil Carbon loss after <u>110 years</u> of Continuous Wheat



- Initial C was 1.8%
- Lost 46 to 70% of the initial C.
- ~28-42 Mt
   CO<sub>2</sub>/acre
- 2300 to 3400 gal of gasoline/acre!

#### **Reversing Soil Carbon Losses**

- Eliminate whole field tillage from our croplands
  - > No-till management
  - Grass plantings



# Change in Soil Carbon Cycle when Tillage is <u>Removed</u>



Other Factors influencing soil Carbon Sequestration

Crop Residue input into soil system
Crop Residue Quality

#### The rate of Carbon Sequestration is also Impacted by Residue Input

**Atmosphere** 

CO<sub>2</sub>

Living biomas

Carbohydrate

#### Soil Environment

Soil Respiration (Decomposition) Soil Organic Carbon

Carbon storage

Plant residue deposition is reduced Carbon storage is reduced

#### Alterations in residue input

In a given field, residue input can be increased through:

- Increased crop rotation intensity (maybe)
- Optimization of crop yield (crop management)
- Crop type (Wheat vs Soybean)
- Residues can be decreased by:
  - Burning
  - > Forage harvest
  - > Long fallow periods

# Soil Carbon vs. Carbon Input in No-till

<u>Dryland</u> crop rotations 12-years, No-till Eastern Colorado 0-4 inches Sherrod et al. (2003)



Residue Quality influences Carbon Sequestration

- Residues with Low C/N ratios decompose rapidly
  - > Soybean 15/1, Hairy Vetch 12/1
- Residues with high C/N ratios decompose slowly.
  - > Wheat straw 80/1, Corn stover 60/1

### Lets come back to Carbon Credits

- Soil carbon sequestration can offset CO<sub>2</sub> emissions
- This offset generates a Carbon Credit?

#### Carbon Credits

- Carbon Credits can be traded as a Commodity
  - Carbon credits are purchased by entities who are interested in reducing <u>net</u> CO<sub>2</sub> emission
- Can provide an external revenue stream for landowners

#### No-till Crop Management

- OK is:
  OK is:
  - > 0.2-0.6 Mt of CO<sub>2</sub>/acre/year
- Sequestration rate is highly dependent on rainfall
  - > 0.6 Mt in NE OK> 0.2 Mt in SW OK



#### Some No-till Guidelines:

Implements acceptable for use include:

- > No-till planter/drill
- > Subsurface disturbance implements:
  - Anhydrous applicator
  - Manure knife applicator
  - Subsoiler/ripper
- Residues can not be burned.
- Follow periods are restricted.



#### Grassland Establishment

- Conversion of <u>cultivated cropland</u> to grassland
  - > Harvests will be limited
- OK is:
  OK is:
  - Most of Oklahoma
     1.0 Mt CO<sub>2</sub>/acre/year
     SW Oklahoma
     0.4 Mt CO<sub>2</sub>/acre/year



#### How are Carbon Credits Marketed?

- Ochicago climate exchange?
- Members can buy and sell carbon credits
- Agricultural carbon credits must be combined and sold as large individual units.
  - They are combined by Aggregators

#### Aggregators:

Oklahoma Carbon Initiative.
 <u>www.okcarbon.com</u>
 North Dakota Farmers Union
 <u>www.carboncredit.ndfu.org</u>
 Agragate

> <u>www.agragate.com</u>

# How much is this deal worth? The Market has fluctuate drastically in the past year!



#### Revenue per Acre of No-till

Ourrent Price: >~\$1.20/Carbon Credit • Aggregator Handling Fee: > ~20% • No-till sequesters: > 0.2-0.6 Mt/acre • At current price the Revenue is: > \$0.20-.60 /acre

#### Oklahoma Carbon Program

 The Oklahoma Conservation Commission provides certification of Aggregators operating in the state.

#### This is not mandatory

- State certification provides a level of protection against fraudulent aggregators
- Certification provides assurance that land practices are followed to sequester carbon

# Potential impact of <u>Cap and</u> <u>Trade</u>?

- System in which CO<sub>2</sub> emissions are capped
- Example:
  - CO<sub>2</sub> emission from a coal fired electric power plant will be restrict
  - > They can buy carbon credits to offset emissions
- There are other alternatives such as some form of carbon tax.
- Currently, carbon credits are purchased voluntarily

# Potential impact of <u>Cap and</u> <u>Trade</u>?

- Europe has a cap on emissions
- Carbon Credits in Europe are worth \$20.30 per Mt
- This equates to \$3.25-9.75/acre for No-till

#### Final thoughts:

- Ourrently, the value of carbon credits is <u>low</u>
  - Oklahoma Carbon Initiative is working to get a premium for agricultural carbon credits in OK
    - Talk to your local Conservation District Office.
  - Cap and trade will dramatically influence value
  - Be cautions about signing <u>long-term</u> contracts

